import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= throw(fraudTrain,0.5)
df50 = sklearn.model_selection.train_test_split(df50)
df_tr, df_tst
= fraudTrain[::10] dfn
= dfn[~dfn.index.isin(df_tr.index)] dfnn
dfnn.is_fraud.mean()
0.0014052108297481207
= dfnn.reset_index(drop=True) dfnn
= sklearn.model_selection.train_test_split(dfnn) df_trn, df_tstn
df_tr.shape,df_tstn.shape
((9009, 22), (25975, 22))
= concat(df_tr, df_tstn)
df2, mask 'index'] = df2.index
df2[= df2.reset_index() df
df.is_fraud.mean(), df_tr.is_fraud.mean(), df_tstn.is_fraud.mean()
(0.1296878573061971, 0.4997224997224997, 0.001347449470644851)
= df.groupby('cc_num') groups
= np.array([item for sublist in (compute_time_difference(group) for _, group in groups) for item in sublist])
edge_index = edge_index.astype(np.float64) edge_index
2].mean() edge_index[:,
11358175.07907386
2]) plt.hist(edge_index[:,
(array([396764., 293830., 253646., 219982., 184930., 141202., 106036.,
71386., 31362., 10150.]),
array([ 0., 3750282., 7500564., 11250846., 15001128., 18751410.,
22501692., 26251974., 30002256., 33752538., 37502820.]),
<BarContainer object of 10 artists>)
= edge_index[:,2].mean() theta
2] = (np.exp(-edge_index[:,2]/(theta)) != 1)*(np.exp(-edge_index[:,2]/(theta))).tolist() edge_index[:,
= 0.8 gamma
= torch.tensor([(int(row[0]), int(row[1])) for row in edge_index if row[2] > gamma], dtype=torch.long).t() edge_index
= torch.tensor(df['amt'].values, dtype=torch.float).reshape(-1,1)
x = torch.tensor(df['is_fraud'].values,dtype=torch.int64)
y = torch_geometric.data.Data(x=x, edge_index = edge_index, y=y, train_mask = mask[0], test_mask= mask[1]) data
= GCN1()
model = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
optimizer = (data.y[data.test_mask]).numpy()
yy = train_and_evaluate_model(data, model, optimizer)
yyhat, yyhat_ = yyhat_.detach().numpy()
yyhat_ eval = evaluation(yy, yyhat, yyhat_)
eval
{'acc': 0.9131857555341675,
'pre': 0.01486013986013986,
'rec': 0.9714285714285714,
'f1': 0.029272492466637965,
'auc': 0.9741133384734002}